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Linear Maps

A function

▪ f : 𝑉→𝑊 between vector spaces 𝑉, 𝑊

is linear if and only if:

▪ v1,v2V: f (v1 + v2) = f (v1) + f (v2)

▪ vV, ℝ: f (v) =  f (v)



Linear Maps

Constructing linear mappings:

A linear map is uniquely determined if we specify a 
mapping value for each basis vector of V.

𝐛1

𝐛2

𝑓(𝐛1)

𝑓(𝐛2)



Matrix Representation

Finite dimensional spaces

▪ Linear maps can be represented as matrices

▪ For each basis vector 𝐛𝑖 :
specify the mapped vector 𝐚𝑖

▪ Write in columns

𝑓 𝑥, 𝑦 = 𝑥 ⋅ 𝑓 𝐛1 + 𝑦 ⋅ 𝑓 𝐛2

𝑦
𝑥



Columns = Images of Basis Vectors

Example: rotation matrix
0
1

1
0

𝐌𝑟𝑜𝑡 =
cos 𝛼 − sin 𝛼
sin 𝛼 cos𝛼

𝛼

𝛼



Linear Maps

Purely linear polynomial in coordinates of x:

𝑓:ℝ2 → ℝ3

𝑓 𝐱 =

𝑥1
2

𝑥1𝑥2
sin 𝑥1 + 𝑥1/𝑥2

𝑥1 + 1

𝐱 =
𝑥1
𝑥2

→ 𝑓 𝐱 =

𝑎11𝑥1 + 𝑎12𝑥2
𝑎21𝑥1 + 𝑎22𝑥2
𝑎31𝑥1 + 𝑎32𝑥2



Linear Maps

Affine Maps:

▪ Linear + constant function

𝑓:ℝ2 → ℝ3

𝑓 𝐱 =

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑡1
𝑎21𝑥1 + 𝑎22𝑥2 + 𝑡2
𝑎31𝑥1 + 𝑎32𝑥2 + 𝑡3

= 𝐀 ⋅ 𝐱 + 𝐭



Affine Subspaces

Linear Subspace:

▪ Line / plane / hyperplane through origin

Affine Subspace

▪ Line / plane / hyperplane anywhere

▪ “affine” = “linear + translation” (adding constant)

𝟎

linear
subspace

affine
subspace



Combinations of Linear Maps

Concatenation of linear maps are linear:

▪ Linear maps 
𝑓: 𝑉1 → 𝑉2

𝑔: 𝑉2 → 𝑉3

▪ Concatenation

𝑓 ∘ 𝑔: 𝑉1 → 𝑉3

𝑓 ∘ 𝑔 𝑥 = 𝑓 𝑔 𝑥

▪ 𝑓 ∘ 𝑔 is a linear again (easy to prove).

▪ Linear mappings are closed w.r.t. to “∘”

▪ Same holds for affine maps.



𝐌𝑓 ⋅ 𝐌𝑔

Matrix Multiplication

Composition of linear maps corresponds to 
matrix products:

▪ 𝑓 𝑔 = 𝑓 ∘ 𝑔 = 𝐌𝑓 ⋅ 𝐌𝑔

▪ Matrix product calculation:

°

The (i, j)-th entry is the 
dot product of row i of Mf

and column j of Mg𝐌𝑓

𝐌𝑔



Algebraic Structure
of Linear Maps



General Linear Group GL(n)

Relevant example:

▪ Invertible 𝑑 × 𝑑 square matrices GL 𝑑 = ℝ𝑑×𝑑 , ⋅

▪ Subgroups:

▪ orthogonal group:
𝑑 × 𝑑 rotation & reflection matrices O 𝑑 ⊂ 𝐺𝐿(𝑑)

▪ special orthogonal group (rotation group):
𝑑 × 𝑑 rotation matrices SO 𝑑 ⊂ 𝑂 𝑑

▪ None are commutative for 𝑑 > 1



Notation

Affine mappings

▪ Rigid motions 𝑆𝐸(𝑑) (special Euclidean group):

▪ All combinations of 𝑆𝑂(𝑑) and translations

▪ Rotations & translations

▪ Rigid motions 𝐸(𝑑) (Euclidean group):

▪ All combinations of 𝑂(𝑑) and translations

▪ Rotations, reflections & translations

▪ Representation
𝑓 𝐱 = 𝐀 ⋅ 𝐱 + 𝐭



Group Structure

not commutative



Not Commutative!

commutativity

intuition: flat structure

∀𝑎, 𝑏 ∈ 𝐺: 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎

a

b

a
b



Matrix Algebra



Matrix Algebra

Define three operations

▪ Matrix addition
𝑎1,1 ⋯ 𝑎1,𝑛
⋮ ⋱ ⋮

𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

+

𝑏1,1 ⋯ 𝑏1,𝑛
⋮ ⋱ ⋮

𝑏𝑚,1 ⋯ 𝑏𝑚,𝑛

=

𝑎1,1 + 𝑏1,1 ⋯ 𝑎1,𝑛 + 𝑏1,𝑛
⋮ ⋱ ⋮

𝑎𝑚,1 + 𝑏𝑚,1 ⋯ 𝑎𝑚,𝑛 + 𝑏𝑚,𝑛

▪ Scalar matrix multiplication

𝜆 ⋅

𝑎1,1 ⋯ 𝑎1,𝑛
⋮ ⋱ ⋮

𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

=

𝜆 ⋅ 𝑎1,1 ⋯ 𝜆 ⋅ 𝑎1,𝑛
⋮ ⋱ ⋮

𝜆 ⋅ 𝑎𝑚,1 ⋯ 𝜆 ⋅ 𝑎𝑚,𝑛

▪ Matrix-matrix multiplication

𝑎1,1 ⋯ 𝑎1,𝑛
⋮ ⋱ ⋮

𝑎𝑚,1 ⋯ 𝑎𝑚,𝑛

⋅

𝑏1,1 ⋯ 𝑏1,𝑚
⋮ ⋱ ⋮

𝑏𝑘,1 ⋯ 𝑏𝑘,𝑚

=

⋱ ⋰

෍

𝑞=1

𝑘

𝑎𝑞,𝑗 ⋅ 𝑏𝑖,𝑞

⋰ ⋱



Algebraic Rules: Addition

Addition: like real numbers
(“commutative group”)

▪ Prerequisites: 

▪ Number of rows match

▪ Number of columns match

▪ Associative: 𝐀 + 𝐁 + 𝐂 = 𝐀 + 𝐁 + 𝐂

▪ Commutative: 𝐀 + 𝐁 = 𝐁 + 𝐀

▪ Subtraction: 𝐀 + −𝐀 = 𝟎

▪ Neutral Op.: 𝐀 + 𝟎 = 𝐀

𝐀,𝐁, 𝐂 ∈ ℝ𝑛×𝑚

(matrices, same size)

Settings



Alg. Rules: Scalar Multiplication

Scalar Multiplication: Vector space

▪ Prerequisites: 

▪ Always possible

▪ Repeated Scaling: 𝜆 𝜇𝐀 = 𝜆𝜇 𝐀

▪ Neutral Operation: 1 ⋅ 𝐀 = 𝐀

▪ Distributivity 1: 𝜆(𝐀 + 𝐁) = 𝜆𝐀 + 𝜆𝐁

▪ Distributivity 2: 𝜆 + 𝜇 𝐀 = 𝜆𝐀 + 𝜇𝐀

So far:

▪ Matrices form vector space

▪ Just different notation, same semantics!

𝜆 ∈ ℝ
𝐀,𝐁 ∈ ℝ𝑛×𝑚

(same size)

Settings



Algebraic Rules: Multiplication

Multiplication: Non-Commutative Ring / Group

▪ Prerequisites: 

▪ Number of columns right
= number of rows left

▪ Associative: 𝐀 ⋅ 𝐁 ⋅ 𝐂 = 𝐀 ⋅ 𝐁 ⋅ 𝐂

▪ Not commutative: often 𝐀 ⋅ 𝐁 ≠ 𝐁 ⋅ 𝐀

▪ Neutral Op.: 𝐀 ⋅ 𝐈 = 𝐀

▪ Inverse: 𝐀 ⋅ 𝐀−1 = 𝐈

▪ Additional prerequisite:

– Matrix must be square!

– Matrix must have full rank

Subset of invertible
matrices only:

𝐺𝐿 𝑑 ⊂ ℝ𝑑×𝑑

“general linear group”



Algebraic Rules: Multiplication

Multiplication: Non-Commutative Ring / Group

▪ Prerequisites: 

▪ Number of columns right
= number of rows left

▪ Associative: 𝐀 ⋅ 𝐁 ⋅ 𝐂 = 𝐀 ⋅ 𝐁 ⋅ 𝐂

▪ Not commutative: often 𝐀 ⋅ 𝐁 ≠ 𝐁 ⋅ 𝐀

▪ Neutral Op.: 𝐀 ⋅ 𝐈 = 𝐀

▪ Inverse: 𝐀 ⋅ 𝐀−1 = 𝐈

▪ Additional prerequisite:

– Matrix must be square!

– Matrix must have full rank

Subset of invertible
matrices only:

𝐺𝐿 𝑑 ⊂ ℝ𝑑×𝑑

“general linear group”

𝐀 ∈ ℝ𝑛×𝑚

𝐁 ∈ ℝ𝑚×𝑘

𝐂 ∈ ℝ𝑘×𝑙

Settings



Transposition Rules

Transposition

▪ Addition: 𝐀 + 𝐁 T = 𝐀T + 𝐁T = 𝐁T + 𝐀T

▪ Scalar-mult.: 𝜆𝐀 T = 𝜆𝐀T

▪ Multiplication: 𝐀 ⋅ 𝐁 T = 𝐁T ⋅ 𝐀T

▪ Self-inverse: 𝐀T
T
= 𝐀

▪ (Inversion:) 𝐀 ⋅ 𝐁 −1 = 𝐁−1 ⋅ 𝐀−1

▪ Inverse-transp.: 𝐀T
−1

= 𝐀−1 T

▪ Othogonality: 𝐀T = 𝐀−1 ⇔ 𝐀 is orthogonal



General Matrix Product (Notation)

All operations are matrix-matrix products:

▪ Matrix-Vector product:

▪ 𝑓 𝐱 = 𝐌𝑓 ⋅ 𝐱

v

M

°



Vectors

Inner product

▪ Matrix-product 𝐫𝐨𝐰 ⋅ 𝐜𝐨𝐥𝐮𝐦𝐧

„𝐱 ⋅ 𝐲“ = 𝐱, 𝐲 = 𝐱T ⋅ 𝐲

𝐱T ⋅ 𝐲 → ℝ



New: Outer Product

Outer product

▪ Matrix-product 𝐜𝐨𝐥𝐮𝐦𝐧 ⋅ 𝐫𝐨𝐰

𝐱 ⋅ 𝐲T

▪ Yields a matrix (rank ≤ 1)

▪ We‘ll need this later…

𝐱 ∈ ℝ𝑛

𝐲 ∈ ℝ𝑚

𝐱 ⋅ 𝐲T → ℝ𝑛×𝑚



Scalar Product

NOT OK

⋅ ⋅

OK



Scalar Product

Matrix Algebra:

▪ Scalar product is a special case

𝐱, 𝐲 = 𝐱T ⋅ 𝐲

▪ Caution when mixing with scalar-vector product!
𝐱, 𝐲 ⋅ 𝐳 ≠ 𝐱 ⋅ 𝐲, 𝐳

𝐱T ⋅ 𝐲 ⋅ 𝐳 ≠ 𝐱 ⋅ 𝐲T ⋅ 𝐳

⋅ ⋅≠

Scalar multiplication
not a matrix-product!



Matrix Algebra Example

Associativity with outer product

𝐱 ⋅ 𝐲, 𝐳 = 𝐱 ⋅ 𝐲T ⋅ 𝐳

= 𝐱 ⋅ 𝐲T ⋅ 𝐳

⋅⋅ =



Vectors

Vectors 

▪ Column matrices

▪ Matrix-Vector product consistent

Co-Vectors

▪ “projectors”, “dual vectors”,
“linear forms”, “row vectors”

▪ Vectors to be projected on

Transposition

▪ Convert vectors into projectors and vice versa

𝐱 ∈ ℝ𝑑

𝐲T ∈ ℝ𝑑


