Modelling 1 SUMMER TERM 2020



Linear Mappings

A function

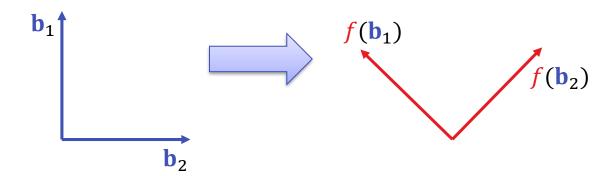
• $f: V \to W$ between vector spaces V, W

is linear if and only if:

- $\forall \mathbf{v}_1, \mathbf{v}_2 \in V$: $f(\mathbf{v}_1 + \mathbf{v}_2) = f(\mathbf{v}_1) + f(\mathbf{v}_2)$
- $\forall \mathbf{v} \in V, \lambda \in \mathbb{R}$: $f(\lambda \mathbf{v}) = \lambda f(\mathbf{v})$

Constructing linear mappings:

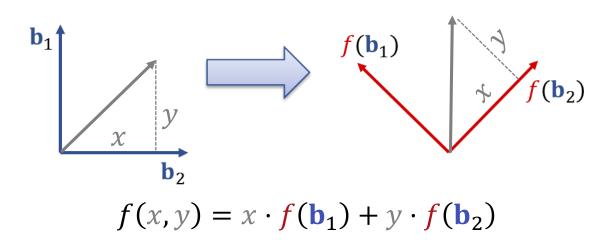
A linear map is uniquely determined if we specify a mapping value for each basis vector of V.



Matrix Representation

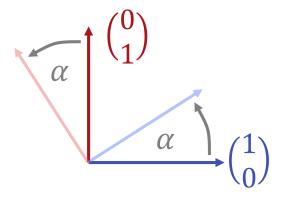
Finite dimensional spaces

- Linear maps can be represented as matrices
 - For each basis vector \mathbf{b}_i : specify the mapped vector \mathbf{a}_i
 - Write in columns



Columns = Images of Basis Vectors

Example: rotation matrix



$$\mathbf{M}_{rot} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Purely linear polynomial in coordinates of x:

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \to f(\mathbf{x}) = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \\ a_{31}x_1 + a_{32}x_2 \end{pmatrix}$$

$$f(\mathbf{x}) = \begin{pmatrix} x_1^2 \\ x_1 x_2 \\ \sin x_1 + x_1/x_2 \\ x_1 + 1 \end{pmatrix}$$

Affine Maps:

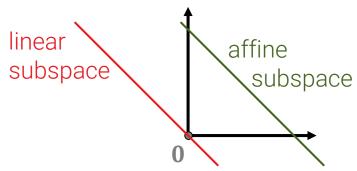
Linear + constant function

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$

$$f(\mathbf{x}) = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + t_1 \\ a_{21}x_1 + a_{22}x_2 + t_2 \\ a_{31}x_1 + a_{32}x_2 + t_3 \end{pmatrix}$$

$$= \mathbf{A} \cdot \mathbf{x} + \mathbf{t}$$

Affine Subspaces



Linear Subspace:

Line / plane / hyperplane through origin

Affine Subspace

- Line / plane / hyperplane anywhere
- "affine" = "linear + translation" (adding constant)

Combinations of Linear Maps

Concatenation of linear maps are linear:

Linear maps

$$f: V_1 \to V_2$$
$$g: V_2 \to V_3$$

Concatenation

$$f \circ g: V_1 \to V_3$$

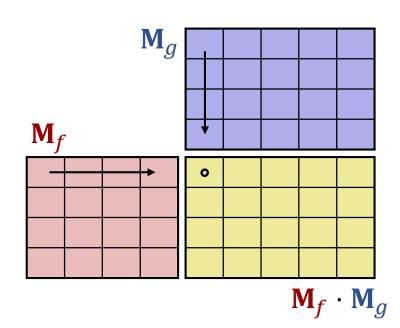
 $f \circ g(x) = f(g(x))$

- $f \circ g$ is a linear again (easy to prove).
- Linear mappings are closed w.r.t. to "o"
- Same holds for affine maps.

Matrix Multiplication

Composition of linear maps corresponds to matrix products:

- $f(g) = f \circ g = \mathbf{M}_f \cdot \mathbf{M}_g$
- Matrix product calculation:



The (i, j)-th entry is the dot product of row i of \mathbf{M}_f and column j of \mathbf{M}_g

Algebraic Structure of Linear Maps

General Linear Group GL(n)

Relevant example:

- Invertible $d \times d$ square matrices $GL(d) = (\mathbb{R}^{d \times d}, \cdot)$
- Subgroups:
 - orthogonal group: $d \times d$ rotation & reflection matrices $O(d) \subset GL(d)$
 - special orthogonal group (rotation group): $d \times d$ rotation matrices $SO(d) \subset O(d)$
- None are commutative for d > 1

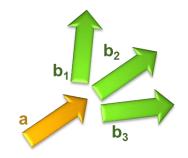
Notation

Affine mappings

- Rigid motions SE(d) (special Euclidean group):
 - All combinations of SO(d) and translations
 - Rotations & translations
- Rigid motions E(d) (Euclidean group):
 - All combinations of O(d) and translations
 - Rotations, reflections & translations
- Representation

$$f(\mathbf{x}) = \mathbf{A} \cdot \mathbf{x} + \mathbf{t}$$

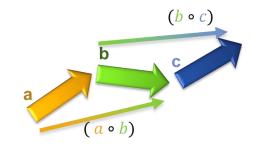
Group Structure



closed operation

all operations always possible

 $\forall a, b \in G: a \circ b \in G$



associativity

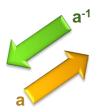
effect "adds up"

 $\forall a, b, c \in G: (a \circ b) \circ c = a \circ (b \circ c)$

Neutral element

unique null operation

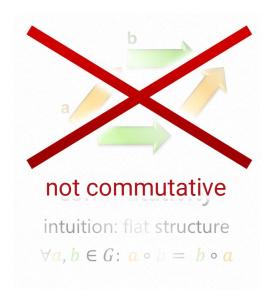
 $\forall a \in G: a \circ id = a$



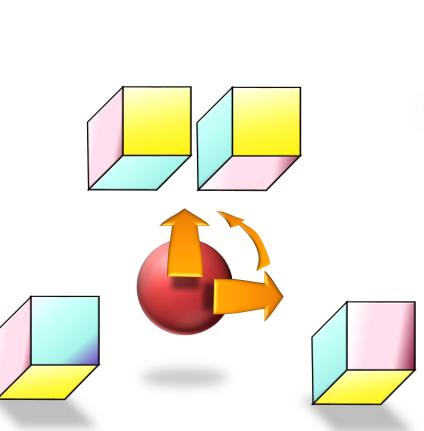
Inverse

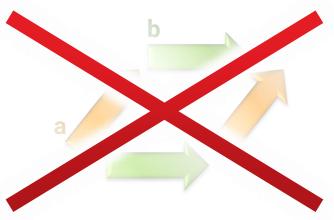
all operations reversible

 $\forall a \in G: a \circ a^{-1} = id$



Not Commutative!





commutativity

intuition: flat structure

 $\forall a, b \in G: a \circ b = b \circ a$

Matrix Algebra

Matrix Algebra

Define three operations

Matrix addition

$$\begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{bmatrix} + \begin{bmatrix} b_{1,1} & \cdots & b_{1,n} \\ \vdots & \ddots & \vdots \\ b_{m,1} & \cdots & b_{m,n} \end{bmatrix} = \begin{bmatrix} a_{1,1} + b_{1,1} & \cdots & a_{1,n} + b_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} + b_{m,1} & \cdots & a_{m,n} + b_{m,n} \end{bmatrix}$$

Scalar matrix multiplication

$$\lambda \cdot \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{bmatrix} = \begin{bmatrix} \lambda \cdot a_{1,1} & \cdots & \lambda \cdot a_{1,n} \\ \vdots & \ddots & \vdots \\ \lambda \cdot a_{m,1} & \cdots & \lambda \cdot a_{m,n} \end{bmatrix}$$

Matrix-matrix multiplication

$$\begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{bmatrix} \cdot \begin{bmatrix} b_{1,1} & \cdots & b_{1,m} \\ \vdots & \ddots & \vdots \\ b_{k,1} & \cdots & b_{k,m} \end{bmatrix} = \begin{bmatrix} \ddots & & \ddots & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix}$$

Algebraic Rules: Addition

Addition: like real numbers ("commutative group")

- Settings
- A, B, C $\in \mathbb{R}^{n \times m}$ (matrices, same size)

- Prerequisites:
 - Number of rows match
 - Number of columns match
- Associative: (A + B) + C = A + (B + C)
- Commutative: A + B = B + A
- Subtraction: $\mathbf{A} + (-\mathbf{A}) = \mathbf{0}$
- Neutral Op.: $\mathbf{A} + \mathbf{0} = \mathbf{A}$

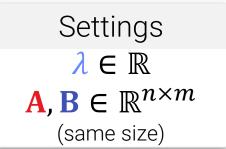
Alg. Rules: Scalar Multiplication

Scalar Multiplication: Vector space

- Prerequisites:
 - Always possible
- Repeated Scaling: $\lambda(\mu A) = \lambda \mu(A)$
- Neutral Operation: $1 \cdot A = A$
- Distributivity 1: $\lambda(A + B) = \lambda A + \lambda B$
- Distributivity 2: $(\lambda + \mu)A = \lambda A + \mu A$

So far:

- Matrices form vector space
- Just different notation, same semantics!



Algebraic Rules: Multiplication

Multiplication: Non-Commutative Ring / Group

- Prerequisites:
 - Number of columns right
 - = number of rows left
- Associative: $(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C})$
- Not commutative: often $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$
- Neutral Op.: $\mathbf{A} \cdot \mathbf{I} = \mathbf{A}$
- Inverse: $\mathbf{A} \cdot (\mathbf{A}^{-1}) = \mathbf{I}$
 - Additional prerequisite:
 - Matrix must be square!
 - Matrix must have full rank

Subset of invertible matrices only:

$$GL(d) \subset \mathbb{R}^{d \times d}$$

"general linear group"

Algebraic Rules: Multiplication

Multiplication: Non-Commutative Ring

- Prerequisites:
 - Number of columns rightnumber of rows left

- Settings $\mathbf{A} \in \mathbb{R}^{n \times m}$
 - $\mathbf{B} \in \mathbb{R}^{m \times k}$ $\mathbf{C} \in \mathbb{R}^{k \times l}$
- Associative: $(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C})$
- Not commutative: often $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$
- Neutral Op.: $\mathbf{A} \cdot \mathbf{I} = \mathbf{A}$
- Inverse: $\mathbf{A} \cdot (\mathbf{A}^{-1}) = \mathbf{I}$
 - Additional prerequisite:
 - Matrix must be square!
 - Matrix must have full rank

Subset of invertible matrices only:

$$GL(d) \subset \mathbb{R}^{d \times d}$$

"general linear group"

Transposition Rules

Transposition

- Addition:
- Scalar-mult.:
- Multiplication:
- Self-inverse:
- (Inversion:)
- Inverse-transp.:
- Othogonality:

$$(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} + \mathbf{A}^{\mathrm{T}}$$

$$(\lambda \mathbf{A})^{\mathrm{T}} = \lambda \mathbf{A}^{\mathrm{T}}$$

$$(\mathbf{A} \cdot \mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} \cdot \mathbf{A}^{\mathrm{T}}$$

$$\left(\mathbf{A}^{\mathrm{T}}\right)^{\mathrm{T}} = \mathbf{A}$$

$$(\mathbf{A} \cdot \mathbf{B})^{-1} = \mathbf{B}^{-1} \cdot \mathbf{A}^{-1}$$

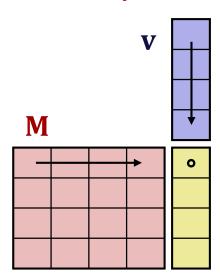
$$\left(\mathbf{A}^{\mathrm{T}}\right)^{-1} = \left(\mathbf{A}^{-1}\right)^{\mathrm{T}}$$

$$[\mathbf{A}^{\mathrm{T}} = \mathbf{A}^{-1}] \Leftrightarrow [\mathbf{A} \text{ is orthogonal}]$$

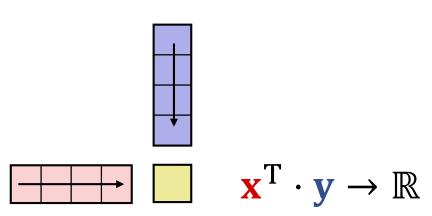
General Matrix Product (Notation)

All operations are matrix-matrix products:

- Matrix-Vector product:
- $f(\mathbf{x}) = \mathbf{M}_f \cdot \mathbf{x}$



Vectors

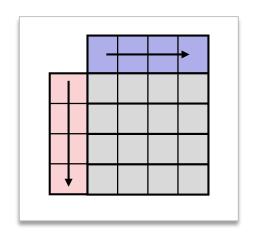


Inner product

Matrix-product row · column

$$_{\mathbf{y}}\mathbf{x}\cdot\mathbf{y}^{\mathbf{u}}=\langle\mathbf{x},\mathbf{y}\rangle=\mathbf{x}^{\mathrm{T}}\cdot\mathbf{y}$$

New: Outer Product



$$\mathbf{x} \in \mathbb{R}^n$$
 $\mathbf{y} \in \mathbb{R}^m$
 $\mathbf{x} \cdot \mathbf{y}^{\mathrm{T}} \to \mathbb{R}^{n \times m}$

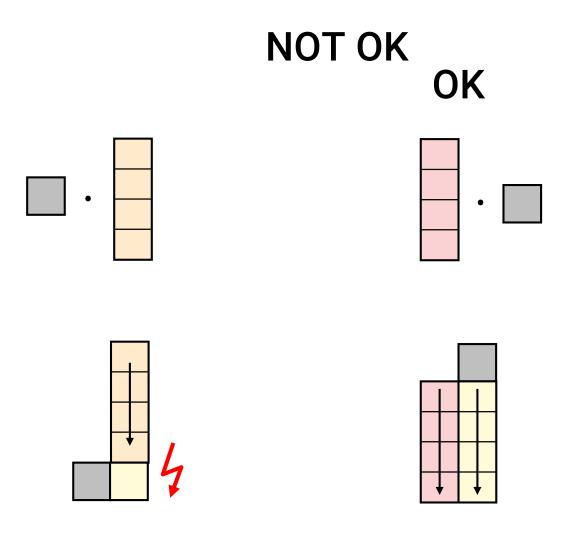
Outer product

Matrix-product column · row

$$\mathbf{x} \cdot \mathbf{y}^{\mathrm{T}}$$

- Yields a matrix (rank ≤ 1)
- We'll need this later...

Scalar Product



Scalar Product

Matrix Algebra:

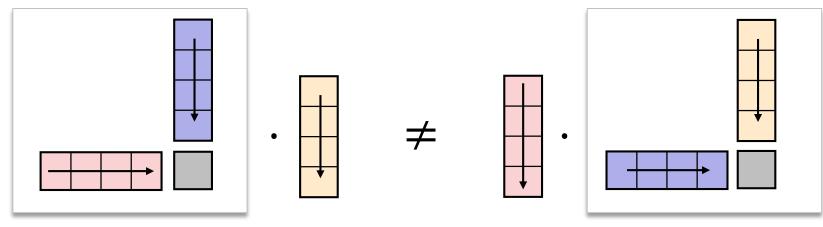
Scalar product is a special case

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\mathrm{T}} \cdot \mathbf{y}$$

Caution when mixing with scalar-vector product!

$$\langle \mathbf{x}, \mathbf{y} \rangle \cdot \mathbf{z} \neq \mathbf{x} \cdot \langle \mathbf{y}, \mathbf{z} \rangle$$
$$(\mathbf{x}^{\mathrm{T}} \cdot \mathbf{y}) \cdot \mathbf{z} \neq \mathbf{x} \cdot (\mathbf{y}^{\mathrm{T}} \cdot \mathbf{z})$$

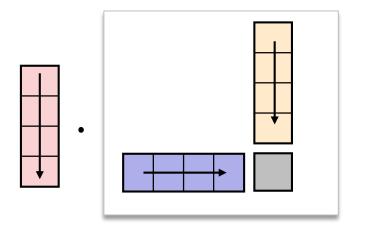
Scalar multiplication not a matrix-product!

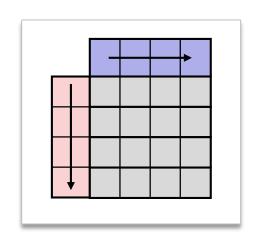


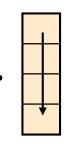
Matrix Algebra Example

Associativity with outer product

$$\mathbf{x} \cdot \langle \mathbf{y}, \mathbf{z} \rangle = \mathbf{x} \cdot (\mathbf{y}^{\mathrm{T}} \cdot \mathbf{z})$$
$$= (\mathbf{x} \cdot \mathbf{y}^{\mathrm{T}}) \cdot \mathbf{z}$$



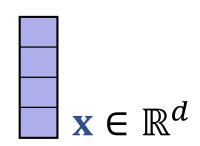




Vectors

Vectors

- Column matrices
- Matrix-Vector product consistent



Co-Vectors

"projectors", "dual vectors", "linear forms", "row vectors"

Vectors to be projected on

Transposition

Convert vectors into projectors and vice versa