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Linear Maps



Linear Maps

A function
= .V — W between vector spaces V, W

is linear if and only if:
"Vvuvelt f(vi+vy) =f(ve) + (V)
=Vvel, leR: f(Av) = Af(V)



Linear Maps

Constructing linear mappings:

A linear map is uniguely determined if we specity a
mapping value for each basis vector of V.
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Matrix Representation

Finite dimensional spaces

= Linear maps can be represented as matrices

= For each basis vector b;:
specify the mapped vector a;

= Write in columns
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fGo,y)=x-f(by)+y-f(by)




Columns = Images of Basis Vectors

Example: rotation matrix
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Linear Maps

Purely linear polynomial in coordinates of x:
f:R? > R3

a11X1 + a12x2>

X1
X = (Xz) - f(X) = | dy1X1 + Ar2X~H
A31X1 T A32X7

X1
X1X2
sin x4 + x1/x5
x1+1

f&x) =



Linear Maps

Affine Maps:

= Linear + constant function
f: R?%? > R3

A11X1 + Aq2X5 + 4
f(x) = <a21x1 T QX5 + tz)
A31X1 + AzpXy + U3

=A-x+t



Affine Subspaces

N\
linear affine
subspace subspace

>

0 N

Linear Subspace:
= Line / plane / hyperplane through origin

Affine Subspace
= Line / plane / hyperplane anywhere
= “affine” = "linear + translation” (adding constant)



Combinations of Linear Maps

Concatenation of linear maps are linear:

= Linear maps
fiVi =V,

g:Vy = V3
= Concatenation
feog:Vy = V3
fog()=f(g))

= fogisalinearagain (easy to prove).
= Linear mappings are closed w.r.t. to “o”

= Same holds for affine maps.



Matrix Multiplication

Composition of linear maps corresponds to
matrix products:

N f(g):fog:Mf'Mg
= Matrix product calculation:

My The (i, j)-th entry is the

dot product of row i of M,
M, ¥ and column j of M,




Algebraic Structure
of Linear Maps




General Linear Group GL(n)

Relevant example:

= Invertible d x d square matrices GL(d) = (R%*4, . )

= Subgroups:

= orthogonal group:
d x d rotation & reflection matrices 0(d) c GL(d)

= special orthogonal group (rotation group):
d X d rotation matrices SO(d) < 0(d)

= None are commutative ford > 1




Notation

Affine mappings

= Rigid motions SE(d) (special Euclidean group):
= All combinations of SO(d) and translations
= Rotations & translations

= Rigid motions E(d) (Euclidean group):
= All combinations of 0(d) and translations
= Rotations, reflections & translations

= Representation
fxX)=A-x+t



Group Structure

P e "’
»»-&««( - ;7)

closed operation associativity
all operations always possible effect "adds up”
Vao,b EG: aeb €EG Va,b,c €G:(aohb)oc=uao(boc)

o g

a
Neutral element Inverse not commutative
unique null operation all operations reversible \tuiti ctur

Vo€ G: aoid= ViEG: noa ' =id € G o



Not Commutativel

C tativit

Intuitic ucture
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Matrix Algebra



Matrix Algebra

Define three operations

= Matrix addition
_a1,1 o Qin by1 - bin 19+ b11 0 aypntbin
_am,l "t Amn bm,l bm,n Am1 t+ bm,l o Ap T bm,n
= Scalar matrix multiplication
a1t A1n ai1 A1 n
am,l tt am,n Am1 am,n

= Matrix-matrix multiplication




Algebraic Rules:

Addition: like real numbers Settings

(“commutative group”)  A/B,CeR™™

(matrices, same size)

= Prerequisites:
= Number of rows match
= Number of columns match

= Associative: (A+B)+C=A+(B+0C)
= Commutative:. A+B=B+A

= Subtraction: A+ (—A)=0

= NeutralOp. A+0=A



Alg. Rules:

Scalar Multiplication: Vector space

= Prerequisites: Settings
- Always possible LER
= Repeated Scaling:  A(uA) = Au(A) A (Earfjf};f "
= Neutral Operation:. 1-A=A
= Distributivity 1: A(A+B)=/1A+/B
= Distributivity 2: (A+ uA =1A+ LA

So far:
= Matrices form vector space
= Just different notation, same semantics!



Algebraic Rules:

Multiplication: Non-Commutative Ring / Group

= Prerequisites:

= Number of columns right
= number of rows left

= Associative: (A-B)-C=A-(B-0)
= Not commutative: oftenA-B+#B:A
= Neutral Op.: A-1=A
" INVerse. A-(A™) =1] subset of invertible
= Additional prerequisite: i matrices only:
— Matrix must be squarel GL(d) c R9xd
— Matrix must have full rank ]




Algebraic Rules:

Multiplication: Non-Commutative Ring ~ >"""9°
= Prerequisites: g 2 ];limxk
= Number of columns right C e RkX
= number of rows left
= Associative: (A-B)-C=A-(B-0)
= Not commutative: oftenA-B+#B:A
= Neutral Op.: A-1=A
= Inverse. A- (A7) =T1] subset of invertible
= Additional prerequisite: i matrices only:
— Matrix must be squarel GL(d) c R9xd
— Matrix must have full rank ]




Transposition Rules

Transposition
= Addition:
= Scalar-mult.:
= Multiplication:
= Self-inverse:

= (Inversion:)

= |nverse-transp.:

= Othogonality:

(A+B)'=AT+B" =
(1A)T = 1AT
(A-B)T =BT.AT
(A7) = A
(A-B)"'=B"1.-A"1
COREICI

AT =A"1] &

BT + AT

|A is orthogonal]



General Matrix Product (Notation)

All operations are matrix-matrix products:
= Matrix-Vector product:

= f(x) =M -x

\"%




Vectors

X -y—-R

Inner product
= Matrix-product row - column

Xy =(x,y)=xT-y



New: OQuter Product

x € R"
y € R™
X - yT — RNXM

Outer product
= Matrix-product column - row
X-y!
= Yields a matrix (rank < 1)
= We'll need this later...



Scalar Product

NOT OK
OK




Scalar Product

Matrix Algebra:
= Scalar product is a special case

<X, Y> — XT 'y
= Caution when mixing with scalar-vector product!
(X,v) -z #x-(y,7)
T.v). (T .
(X Y) TZ * X (Y Z) Scalar multiplication
not a matrix-product!




Matrix Algebra Example

Associativity with outer product

x-(y,z) =x-(yT-z)
=(x-yT) -z




Vectors

Vectors
= Column matrices
. . X € R4
= Matrix-Vector product consistent
Co-Vectors
» “projectors”, “dual vectors’, yl € R?

‘linear forms”, “row vectors”
= Vectors to be projected on

Transposition
= Convert vectors into projectors and vice versa



